4.7 Article

Technical Note: Optical properties of desert aerosol with non-spherical mineral particles: data incorporated to OPAC

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 15, Issue 10, Pages 5947-5956

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-15-5947-2015

Keywords

-

Funding

  1. LMU Munich's Institutional Strategy LMUexcellent within German Excellence Initiative

Ask authors/readers for more resources

Mineral particles, in general, are not spheres and so the assumption of spherical particles, instead of more realistic shapes, has significant effects on modeled optical properties and therefore on remote-sensing procedures for desert aerosol and the derived radiative forcing. Thus, in a new version of the database OPAC (Optical Properties of Aerosols and Clouds; Hess et al., 1998), the optical properties of the mineral particles are modeled describing the particles as spheroids with size dependent aspect ratio distributions, but with the size distributions and the spectral refractive indices not changed against the previous version of OPAC. The spheroid assumption is known to substantially improve the scattering functions but pays regard to the limited knowledge on particle shapes in an actual case. The relative deviations of the optical properties of non-spherical mineral particles from those of spherical particles are for the phase function in the solar spectral range up to +60% at scattering angles of about 130 degrees and up to -60% in the backscatter region, but less than 2% for the asymmetry parameter. The deviations are generally small in the thermal infrared and for optical properties that are independent of the scattering angle. The improved version of OPAC (4.0) is freely available at www.rascin.net.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available