4.4 Article

The putative leucine sensor Sestrin2 is hyperphosphorylated by acute resistance exercise but not protein ingestion in human skeletal muscle

Journal

EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
Volume 118, Issue 6, Pages 1241-1253

Publisher

SPRINGER
DOI: 10.1007/s00421-018-3853-8

Keywords

Amino acid; Resistance exercise; Mammalian target of rapamycin; Oxidative stress; Antioxidant; Sestrins; Hyperphosphorylation

Funding

  1. AgResearch (Strategic Science Investment Fund) [A19079, A21246]

Ask authors/readers for more resources

Dietary protein and resistance exercise (RE) are both potent stimuli of the mammalian target of rapamycin complex 1 (mTORC1). Sestrins1, 2, 3 are multifunctional proteins that regulate mTORC1, stimulate autophagy and alleviate oxidative stress. Of this family, Sestrin2 is a putative leucine sensor implicated in mTORC1 and AMP-dependent protein kinase (AMPK) regulation. There is currently no data examining the responsiveness of Sestrin2 to dietary protein ingestion, with or without RE. In Study 1, 16 males ingested either 10 or 20 g of milk protein concentrate (MPC) with muscle biopsies collected pre, 90 and 210 min post-beverage consumption. In Study 2, 20 males performed a bout of RE immediately followed by the consumption of 9 g of MPC or carbohydrate placebo. Analysis of Sestrins, AMPK and antioxidant responses was examined. Dietary protein ingestion did not result in Sestrin2 mobility shift. After RE, Sestrin2 phosphorylation state was significantly altered and was not further modified by post-exercise protein or carbohydrate ingestion. With RE, AMPK phosphorylation remained stable, while the mRNA expressions of several antioxidants were upregulated. Dietary protein ingestion did not affect the signalling by the family of Sestrins. With RE, Sestrin2 was hyperphosphorylated, with no further evidence of a relationship to AMPK signalling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available