4.6 Article

Chemical grafting of multi-walled carbon nanotubes on metal phthalocyanines for the preparation of nanocomposites with high dielectric constant and low dielectric loss for energy storage application

Journal

RSC ADVANCES
Volume 5, Issue 64, Pages 51542-51548

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra07641b

Keywords

-

Funding

  1. National Science Foundation of China [50803025, 51173062]

Ask authors/readers for more resources

Polymer/CNT (carbon nanotube) composites with a high dielectric constant show great potential for energy storage applications. However, these CNT-based composites usually suffer from high dielectric loss and low breakdown strength, and pose difficulties in the tailoring of the dielectric constant. The integration of a CNT cladding insulator filler layer into the polymers provides an effective way to reach a low dielectric loss and a high breakdown strength. But the insulator layer could significantly reduce the dielectric constant, thereby decreasing the energy storage density of composites. Herein, we have designed and fabricated a novel candidate composed of a semiconductor NH2-CuPc coated multi-walled carbon nanotube (MWCNT-CuPc) through chemical grafting, in which dielectric CuPc layers can act not only as insulation barriers for suppressing leakage current, but also as semi-conductor layers to partially block electron motion. Thus the as-prepared composites exhibit not only a higher dielectric constant but also extremely decreased dielectric loss and excellent dielectric strength. Moreover, the dielectric properties of the composites can be easily tuned by tailoring the loading of MWCNT-CuPc. Our strategy provides a new pathway to achieve polymer/CNT composites with high dielectric performances for energy storage applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available