4.7 Article

ZOMBIE VORTEX INSTABILITY. I. A PURELY HYDRODYNAMIC INSTABILITY TO RESURRECT THE DEAD ZONES OF PROTOPLANETARY DISKS

Journal

ASTROPHYSICAL JOURNAL
Volume 808, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/808/1/87

Keywords

accretion, accretion disks; hydrodynamics; instabilities; protoplanetary disks; turbulence; waves

Funding

  1. NSF [AST-0905801, AST-1009907, AST-1010052, PHY-1125915]
  2. NASA PATM grants [NNX10AB93G, NNX13AG56G]
  3. National Science Foundation [OCI-1053575, DGE 1106400]
  4. NASA-HEC
  5. Ziff Environmental Fellowship from Harvard University Center for the Environment
  6. Hertz Foundation Fellowship
  7. Kavli Institute for Theoretical Physics Graduate Student Fellowship
  8. Schneider Chair in Physics
  9. NASA [135929, NNX10AB93G, 473672, NNX13AG56G] Funding Source: Federal RePORTER
  10. Direct For Mathematical & Physical Scien
  11. Division Of Astronomical Sciences [1510703, 1510708, 1010052] Funding Source: National Science Foundation

Ask authors/readers for more resources

There is considerable interest in hydrodynamic instabilities in dead zones of protoplanetary disks as a mechanism for driving angular momentum transport and as a source of particle-trapping vortices to mix chondrules and incubate planetesimal formation. We present simulations with a pseudo-spectral anelastic code and with the compressible code Athena, showing that stably stratified flows in a shearing, rotating box are violently unstable and produce space-filling, sustained turbulence dominated by large vortices with Rossby numbers of order similar to 0.2-0.3. This Zombie Vortex Instability (ZVI) is observed in both codes and is triggered by Kolmogorov turbulence with Mach numbers less than similar to 0.01. It is a common view that if a given constant density flow is stable, then stable vertical stratification should make the flow even more stable. Yet, we show that sufficient vertical stratification can be unstable to ZVI. ZVI is robust and requires no special tuning of boundary conditions, or initial radial entropy or vortensity gradients (though we have studied ZVI only in the limit of infinite cooling time). The resolution of this paradox is that stable stratification allows for a new avenue to instability: baroclinic critical layers. ZVI has not been seen in previous studies of flows in rotating, shearing boxes because those calculations frequently lacked vertical density stratification and/ or sufficient numerical resolution. Although we do not expect appreciable angular momentum transport from ZVI in the small domains in this study, we hypothesize that ZVI in larger domains with compressible equations may lead to angular transport via spiral density waves.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available