4.5 Article

Development of cardiovascular and neurodevelopmental metrics as sublethal endpoints for the Fish embryo toxicity test

Journal

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
Volume 37, Issue 10, Pages 2530-2541

Publisher

WILEY
DOI: 10.1002/etc.4212

Keywords

Animal alternatives; Growth; Pericardial edema; Developmental toxicity; Neurotoxicity; Hazard; risk assessment

Funding

  1. American Association for Laboratory Animal Science Grants for Laboratory Animal Science program
  2. Texas Christian University Research and Creative Activities Fund
  3. Texas Christian University Biology Department Adkins funds

Ask authors/readers for more resources

The fathead minnow fish embryo toxicity (FET) test has been proposed as a more humane alternative to current toxicity testing methods as younger organisms are thought to experience less distress during toxicant exposure. However, the FET test protocol does not include endpoints that allow for the prediction of sublethal adverse outcomes, limiting its utility relative to other test types. Researchers have proposed the development of sublethal endpoints for the FET test to increase its utility. The present study 1) developed methods for previously unmeasured sublethal metrics in fathead minnows (i.e., spontaneous contraction frequency and heart rate) and 2) investigated the responsiveness of several sublethal endpoints related to growth (wet wt, length, and growth-related gene expression), neurodevelopment (spontaneous contraction frequency, eye size, and neurodevelopmental gene expression), and cardiovascular function and development (pericardial area, heart rate, and cardiovascular system-related gene expression) as additional FET test metrics using the model toxicant 3,4-dichloroaniline. Of the growth, neurological, and cardiovascular endpoints measured, length, eye size, and pericardial area were found to be more responsive than the other endpoints evaluated. Future studies linking alterations in these endpoints to longer-term adverse impacts are needed to fully evaluate the predictive power of these metrics in chemical and whole-effluent toxicity testing. Environ Toxicol Chem 2018;37:2530-2541. (c) 2018 SETAC

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available