4.7 Article

Removal of aromatic and hydrophobic fractions of natural organic matter (NOM) using surfactant modified magnetic nanoadsorbents (MNPs)

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 25, Issue 25, Pages 25565-25579

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-018-2611-0

Keywords

NOM; Nanoadsorbents; Adsorption; Isotherms-kinetics; Drinking water

Funding

  1. Indian Institute of Technology (ISM) Dhanbad under Junior Research Fellowship scheme

Ask authors/readers for more resources

The present study investigated the potential of surfactant modified magnetic nanoadsorbents (MNPs) for the removal of aromatic and hydrophobic fractions of natural organic matter (NOM), leading to the formation of trihalomethanes (THMs) in chlorinated drinking water. Co-precipitation method was used for the synthesis of MNPs. However, MNPs have a tendency to form an agglomeration. Therefore, polyethylene glycol (PEG) was used as a surface modifier to reduce the agglomeration. The PEG-coated MNPs were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), BET surface area, X-ray diffraction (XRD), Fourier transform spectrometer (FTIR), and zeta (zeta) potential. FESEM observation indicates that PEG-coated MNPs were spherical in shape and 25 nm in size. Zeta potential values (-58.35 to -74.9 mV) indicated excellent stability of PEG-MNPs. FTIR spectra indicated the presence of a -CH2 group, responsible for the chemical interaction between aromatic and humic content. Batch experiments were conducted by studying the effect of pH, contact time, and adsorbent dosage on NOM removal. Excellent removal of DOC (94.49%) and UV254 (89.32%) was observed at the optimum dose of adsorbent (0.75 g/L) and at pH 7.0. Adsorption kinetics followed pseudo-second-order reaction (R-2, 0.973) and occurs by multilayer chemisorption which is due to the chemical interaction between aromatic and humic compounds of NOM with MNPs. Thus, MNPs showed great potential as a novel adsorbent for the removal of aromatic and hydrophobic compounds of NOM and can significantly be used to curtail the problem of THMs in drinking water supplies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available