4.8 Article

Additional Benefits of Federal Air-Quality Rules: Model Estimates of Controllable Biogenic Secondary Organic Aerosol

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 52, Issue 16, Pages 9254-9265

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b01869

Keywords

-

Funding

  1. National Science Foundation [AGS-1719252, AGS-1719245]

Ask authors/readers for more resources

Atmospheric models that accurately describe the fate and transport of trace species for the right reasons aid in the development of effective air-quality management strategies that safeguard human health. Controllable emissions facilitate the formation of biogenic secondary organic aerosol (BSOA) to enhance the atmospheric fine particulate matter (PM2.5) burden. Previous modeling with the EPA's Community Multiscale Air Quality (CMAQ) model predicted that anthropogenic primary organic aerosol (POA) emissions had the greatest impact on BSOA. That experiment included formation processes involving semivolatile partitioning but not aerosol liquid water (ALW), a ubiquitous PM constituent. We conduct 17 summertime CMAQ simulations with updated chemistry and evaluate changes in BSOA due to the removal of individual pollutants and source sectors for the contiguous U.S. CMAQ predicts SO2 from electricity generating units, and mobile source NOx emissions have the largest impacts on BSOA. The removal of anthropogenic NOx, SO2, and POA emissions during the simulation reduces the nationally averaged BSOA by 23, 14, and 8% and PM2.5 by 9.2, 14, and 5.3%, respectively. ALW mass concentrations decrease by 10 and 35% in response to the removal of NOx and SO2 emissions. This work contributes chemical insight into ancillary benefits of Federal NOx and SO2 rules that concurrently reduce organic PM2.5 mass.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available