4.8 Article

Why Variant Colloid Transport Behaviors Emerge among Identical Individuals in Porous Media When Colloid-Surface Repulsion Exists

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 52, Issue 13, Pages 7230-7239

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b00811

Keywords

-

Funding

  1. National Science Foundation Hydrologic Science Program [1547533, 1721660]

Ask authors/readers for more resources

We herein demonstrate the cause of well-observed variant transport behaviors for apparently identical colloids in porous media under conditions of colloid-collector repulsion (unfavorable attachment conditions). We demonstrate that variant colloid transport behavior under unfavorable conditions can be explained by inherently variable colloid residence times prior to arrest on grains (collectors). We demonstrate that the residence time distributions derived from particle trajectory simulations incorporating representative nanoscale heterogeneity provide quantitative prediction of colloid transport under unfavorable conditions. We quantitatively predict hyper-exponential retention profiles in glass beads from representative nanoscale heterogeneity determined for glass, and we qualitatively predict nonmonotonic retention profiles in quartz sand from an estimated representative nanoscale heterogeneity for quartz. We also demonstrate that the transition from hyper-exponential to nonmonotonic profiles among glass beads versus quartz sand under otherwise equivalent conditions is primarily driven by greater grain angularity and consequent greater length and number of grain to grain contacts in quartz sand relative to glass beads. That continuum-scale transport behaviors emerge from upscaling of simulated pore-scale colloid residence times corroborates the utility of representative nanoscale heterogeneity for quantitative prediction of colloid transport under unfavorable conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available