4.8 Article

Phosphate Transporter PvPht1;2 Enhances Phosphorus Accumulation and Plant Growth without Impacting Arsenic Uptake in Plants

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 52, Issue 7, Pages 3975-3981

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b06674

Keywords

-

Funding

  1. National Natural Science Foundation of China [21637002, 21707068]
  2. Jiangsu Provincial Natural Science Foundation of China [BK20160649]
  3. National Key Research and development program of China [2016YFD0800801]

Ask authors/readers for more resources

Phosphorus is an important macronutrient for plant growth and is acquired by plants mainly as phosphate (P). Phosphate transporters (Phts) are responsible for P and arsenate (AsV) uptake in plants including arsenic-hyperaccumulator Pteris vittata. P. vittata is efficient in AsV uptake and P utilization, but the molecular mechanism of its P uptake is largely unknown. In this study, a P. vittata Pht, PvPht1;2, was cloned and transformed into tobacco (Nicotiana tabacum). In hydroponic experiments, all transgenic lines displayed markedly higher P content and better growth than wild type, suggesting that PvPht1;2 mediated P uptake in plants. In addition, expressing PvPht1;2 also increased the shoot/root P-32 ratio by 69-92% and enhanced xylem sap P by 46-62%, indicating that PvPht1;2 also mediated P translocation in plants. Unlike many Phts permeable to AsV, PvPht1;2 showed little ability to transport AsV. In soil experiments, PvPht1;2 also significantly increased shoot biomass without elevating As accumulation in PvPht1;2 transgenic tobacco. Taken together, our results demonstrated that PvPht1;2 is a specific P transporter responsible for P acquisition and translocation in plants. We envisioned that PvPht1;2 can enhance crop P acquisition without impacting AsV uptake, thereby increasing crop production without compromising food safety.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available