4.8 Article

Unraveling the Mechanisms of Visible Light Photocatalytic NO Purification on Earth-Abundant Insulator-Based Core-Shell Heterojunctions

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 52, Issue 3, Pages 1479-1487

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b05457

Keywords

-

Funding

  1. National Natural Science Foundation of China [21777011, 21501016, 51478070]
  2. National Key RD Plan [2016YFC02047]
  3. Innovative Research Team of Chongqing [CXTDG201602014]
  4. Key Natural Science Foundation of Chongqing [cstc2017jcyjBX0052]

Ask authors/readers for more resources

Earth-abundant insulators are seldom exploited as photocatalysts. In this work, we constructed a novel family of insulator-based heterojunctions and demonstrated their promising applications in photocatalytic NO purification, even under visible light irradiation. The heterojunction formed between the insulator SrCO3 and the photosensitizer BiOI, via a special SrCO3-BiOI core-shell structure, exhibits an enhanced visible light absorbance between 400-600 nm, and an unprecedentedly high photocatalytic NO removal performance. Further density functional theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) analysis revealed that the covalent interaction between the O 2p orbital of the insulator (SrCO3, n-type) and the Bi 6p orbital of photosensitizer (BiOI, p-type) can provide an electron transfer channel between SrCO3 and BiOI, allowing the transfer of the photoexcited electrons from the photosensitizer to the conduction band of insulator (confirmed by charge difference distribution analysis and time-resolved fluorescence spectroscopy). The center dot O-2(-) and center dot OH radicals are the main reactive species in photocatalytic NO oxidation. A reaction pathway study based on both in situ FT-IR and molecular-level simulation of NO adsorption and transformation indicates that this heterojunction can efficiently transform NO to harmless nitrate products via the NO -> NO+ and NO2+-> nitrate or nitrite routes. This work provides numerous opportunities to explore earth-abundant insulators as visible-light-driven photocatalysts, and also offers a new mechanistic understanding of the role of gas-phase photocatalysis in controlling air pollution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available