4.8 Article

Evidence of an Important Role of Photochemistry in the Attenuation of the Secondary Contaminant 3,4-Dichloroaniline in Paddy Water

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 52, Issue 11, Pages 6334-6342

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b00710

Keywords

-

Funding

  1. Erasmus Placement program
  2. University of Torino [GHIG_RILO_16_02]

Ask authors/readers for more resources

The secondary pollutant 3,4-dichloroaniline (DCA) is produced by the biological degradation of several herbicides, including propanil in paddy fields. The enzymatic hydrolysis of propanil yields DCA with almost quantitative yield. DCA undergoes rather fast photodegradation in paddy water, mostly by direct photolysis. An exception might be represented by the cases (rather rare in paddies) of quite high nitrate concentration (around 50 mg of NO3-L-1 ), when DCA degradation by CO3 center dot- would play a comparable role to that by direct photolysis. The experimentally measured photoreactivity parameters were used as input data for a photochemical model, which predicted a DCA lifetime of 0.5-1 days in sunlit paddy fields in late May, when propanil is usually applied. The model predictions compare remarkably well with the DCA attenuation data reported in field studies, carried out in paddies in temperate regions. Moreover, a consecutive reaction model based on typical biological (propanil) and photochemical (DCA) lifetimes reproduced quite well the time trends of both compounds in paddies, as reported in the literature. These successful comparisons suggest that photodegradation in general, and direct photolysis in particular, may play a key role in DCA attenuation in paddy water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available