4.7 Article

Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa

Journal

ENVIRONMENTAL POLLUTION
Volume 234, Issue -, Pages 379-388

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2017.11.081

Keywords

Chlorella pyrenoidosa; Azoxystrobin; Transcriptome; Amino acid metabolism

Funding

  1. National Key Research and Development Program of China [2017YFD0200503]
  2. National Natural Science Foundation of China [21577128, 21777144]

Ask authors/readers for more resources

The top-selling strobilurin, azoxystrobin (AZ), is a broad-spectrum fungicide that protects against many kinds of pathogenic fungi by preventing their ATP production. The extensive use of AZ can have negative consequences on non-target species and its effects and toxic mechanisms on algae are still poorly understood. In this work, Chlorella pyrenoidosa that had been grown in BG-11 medium was exposed to AZ (0.5-10 mg L-1) for 10 d. The physiological and molecular responses of the algae to AZ treatment, including photosynthetic efficiency, lipid peroxidation level, antioxidant enzyme activities, as well as transcriptome-based analysis of gene expression, were examined to investigate the potential toxic mechanism. Results shows that the photosynthetic pigment (per cell) increased slightly after AZ treatments, indicating that the photosystem of C. pyrenoidosa may have been strengthened. Glutathione and ascorbate contents were increased, and antioxidant enzyme activities were induced to relieve oxidative damage (e.g., from lipid peroxidation) in algae after AZ treatment. Transcriptome-based analysis of gene expression combined with physiological verification suggested that the 5 mg L-1 AZ treatment did not inhibit ATP generation in C pyrenoidosa, but did significantly alter amino acid metabolism, especially in aspartate- and glutamine-related reactions. Moreover, perturbation of ascorbate synthesis, fat acid metabolism, and RNA translation was also observed, suggesting that AZ inhibits algal cell growth through multiple pathways. The identification of AZ-responsive genes in the eukaryotic alga C pyrenoidosa provides new insight into AZ stress responses in a non-target organism. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available