4.4 Article

Variable Responses to Novel Hosts by Populations of the Seed Beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae)

Journal

ENVIRONMENTAL ENTOMOLOGY
Volume 47, Issue 5, Pages 1194-1202

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/ee/nvy108

Keywords

grain legume; hierarchical Bayesian model; intraspecific variation; larval survival; oviposition behavior

Categories

Funding

  1. Utah Agricultural Experiment Station (UAES) [9075]
  2. Research Catalyst Grant from Utah State University

Ask authors/readers for more resources

Cosmopolitan pests can consist of geographic populations that differ in their current host ranges or in their ability to colonize a novel host. We compared the responses of cowpea-adapted, seed-beetle populations (Callosobruchus maculatus [F.] (Coleoptera: Chrysomelidae: Bruchinae)) from Africa, North America, and South America to four novel legumes: chickpea, lentil, mung bean, and pea. We also qualitatively compared these results to those obtained earlier for an Asian population. For each host, we measured larval survival to adult emergence and used both no-choice and choice tests to estimate host acceptance. The pattern of larval survival was similar among populations: high or moderately high survival on cowpea, mung bean, and chickpea, intermediate survival on pea, and very low survival on lentil. One exception was unusually high survival of African larvae on pea, and there was modest variation among populations for survival on lentil. The African population was also an outlier with respect to host acceptance; under no-choice conditions, African females showed a much greater propensity to accept the two least preferred hosts, chickpea and lentil. However, greater acceptance of these hosts by African females was not evident in choice tests. Inferences about population differences in host acceptance can thus strongly depend on experimental protocol. Future selection experiments can be used to determine whether the observed population differences in initial performance will affect the probability of producing self-sustaining populations on a marginal crop host.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available