4.5 Article

Electromechanical responses of piezoelectric nanoplates with flexoelectricity

Journal

ACTA MECHANICA
Volume 226, Issue 9, Pages 3097-3110

Publisher

SPRINGER WIEN
DOI: 10.1007/s00707-015-1373-8

Keywords

-

Categories

Funding

  1. NSFC [11372238, 11302161, 11321062, 11302162]

Ask authors/readers for more resources

Flexoelectricity, representing the coupling between electrical polarizations and strain gradients, should be taken into account in the analysis of electromechanical responses of nanostructures where large strain gradients are expected. In this paper, we will explore the influence of flexoelectricity on the electromechanical coupling behavior of a simply supported piezoelectric nanoplate by using the Kirchhoff plate theory. The governing equations and corresponding boundary conditions are deduced from Hamilton's principle, and the analytical solutions are obtained for the deflection and natural frequency. The results indicate that the deflections predicted by the present model are smaller than those calculated by the classical one which only considers piezoelectricity, while the frequencies exhibit the opposite trend. In addition, the flexoelectric effect is more prominent for thinner plates; the differences of the deflections or frequencies between the two models are gradually diminishing with an increase in the plate thickness. The current work may contribute to the understanding of the higher-order electromechanical coupling mechanism. Moreover, the modified plate model can be utilized to accurately design novel piezoelectric nanoplate-based sensors in nanoelectromechanical systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available