4.7 Article

Seismic assessment of a three-story wood building with an integrated CLT-lightframe system using RTHS

Journal

ENGINEERING STRUCTURES
Volume 167, Issue -, Pages 695-704

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.engstruct.2018.01.025

Keywords

CLT, light-frame; Post-tensioning; Hybrid testing; Wood shearwall; Hybrid system; Hybrid shearwall

Ask authors/readers for more resources

This paper presents the results of an experimental study whose objective was to investigate the behavior of a hybrid wood shear-wall system defined herein as a combination of traditional light-frame wood shear walls with post-tensioned rocking Cross-Laminated Timber (CLT) panels. The post-tensioned CLT panels in the hybrid system offer both vertical and lateral load resistance and self-centering capacities. The traditional Light-Frame Wood Systems (LiFS) provide additional lateral load resistance along with a large amount of energy dissipation through the friction of nail connections. Thus, a combination of these two types of structures, in which traditional light-frame wood shearwalls are utilized as structural partition walls, may provide an excellent structural solution for mid-rise to tall wood buildings for apartments/condos, where there is a need for resisting large lateral and vertical loads as well as structural stability. In this study, a real-time hybrid testing algorithm using a combination of time-delay updating and Newmark-Beta feed forward to reduce the undesirable effects of time delay was introduced. The top two-stories of a three-story building were modeled as a numerical substructure with the first story as the experimental CLT-LiFS substructure. The experimental results of the hybrid wall are presented and discussed in this paper.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available