4.7 Article

POLARIZATION STRUCTURE OF FILAMENTARY CLOUDS

Journal

ASTROPHYSICAL JOURNAL
Volume 807, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/807/1/47

Keywords

ISM: clouds; magnetic fields; magnetohydrodynamics (MHD); polarization

Funding

  1. Japan Society for the Promotion of Science (JSPS) [21244021]
  2. HPCI Strategic Program of the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  3. Grants-in-Aid for Scientific Research [15K05032] Funding Source: KAKEN

Ask authors/readers for more resources

Filaments are considered to be basic structures, and molecular clouds consist of filaments. Filaments are often observed as extending in the direction perpendicular to the interstellar magnetic field. The structure of filaments has been studied based on a magnetohydrostatic equilibrium model. Here. we simulate the expected polarization pattern for isothermal magnetohydrostatic filaments. The filament exhibits a polarization pattern in which the magnetic field is apparently perpendicular to the filament when observed from the direction perpendicular to the magnetic field. When the line of sight is parallel to the global magnetic field, the observed polarization pattern is dependent on the center-to-surface density ratio for the filament and the concentration of the gas mass toward the central magnetic flux tube. Filaments with low center-to-surface density ratios have an insignificant degree of polarization when observed from the direction parallel to the global magnetic field. However, models with a large center-to-surface density ratio have polarization patterns that indicate that the filament is perpendicularly threaded by the magnetic field. When mass is heavily concentrated at the central magnetic flux tube, which can be realized by the ambipolar diffusion process, the polarization pattern is similar to that expected for a low center-to-surface density contrast.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available