4.8 Article

Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 11, Issue 3, Pages 669-681

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ee00239h

Keywords

-

Funding

  1. National Natural Science Foundation of China [21703185, 21233004, 21474138, 21428303, 21321062]
  2. US National Science Foundation [DMR-1410320, DMR-1410936]
  3. Principal Fund of Xiamen University [20720170042]
  4. National Basic Research Program of China [2016YFB0901502, 2011CB935903]
  5. Guangdong Innovative and Entrepreneurial Research Team Program [2014ZT05N200]
  6. DOE's Office of Biological and Environmental Research
  7. Direct For Mathematical & Physical Scien [1410320] Funding Source: National Science Foundation

Ask authors/readers for more resources

Advanced composite electrodes containing multiple active components are often used in lithium-ion batteries for practical applications. The performance of such heterogeneous composite electrodes can in principle be enhanced by tailoring the concurrent reaction dynamics in multiple active components for promoting their collective beneficial effects. However, the potential of this design principle has remained uncharted to date. Here we develop a composite anode of Cu/Si/Ge nanowire arrays, where each nanowire consists of a core of Cu segments and a Si/Ge bilayer shell. This unique electrode architecture exhibited a markedly improved electrochemical performance over the reference Cu/Si systems, demonstrating a stable capacity retention (81% after 3000 cycles at 2C) and doubled specific capacity at a rate of 16C (1C = 2 A g(-1)). By using in situ transmission electron microscopy and electrochemical testing, we unravel a novel reaction mechanism of dynamic co-lithiation/co-delithiation in the active Si and Ge bilayer, which is shown to effectively alleviate the electrochemically induced mechanical degradation and thus greatly enhance the long-cycle stability of the electrode. Our findings offer insights into a rational design of high-performance lithium-ion batteries via exploiting the concurrent reaction dynamics in the multiple active components of composite electrodes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available