4.8 Review

New horizons for inorganic solid state ion conductors

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 11, Issue 8, Pages 1945-1976

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ee01053f

Keywords

-

Funding

  1. National Key Technologies RAMP
  2. D Program, China [2016YFB0901500]
  3. National Natural Science Foundation of China [51788104, 51725206, 51421002]
  4. BMBF
  5. BASF
  6. NSERC
  7. Nanosystems Initiative Munich (NIM)
  8. Max Planck Society
  9. CIC Energigune, Spain

Ask authors/readers for more resources

Among the contenders in the new generation energy storage arena, all-solid-state batteries (ASSBs) have emerged as particularly promising, owing to their potential to exhibit high safety, high energy density and long cycle life. The relatively low conductivity of most solid electrolytes and the often sluggish charge transfer kinetics at the interface between solid electrolyte and electrode layers are considered to be amongst the major challenges facing ASSBs. This review presents an overview of the state of the art in solid lithium and sodium ion conductors, with an emphasis on inorganic materials. The correlations between the composition, structure and conductivity of these solid electrolytes are illustrated and strategies to boost ion conductivity are proposed. In particular, the high grain boundary resistance of solid oxide electrolytes is identified as a challenge. Critical issues of solid electrolytes beyond ion conductivity are also discussed with respect to their potential problems for practical applications. The chemical and electrochemical stabilities of solid electrolytes are discussed, as are chemo-mechanical effects which have been overlooked to some extent. Furthermore, strategies to improve the practical performance of ASSBs, including optimizing the interface between solid electrolytes and electrode materials to improve stability and lower charge transfer resistance are also suggested.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available