4.7 Article

Simulation of heat extraction from CO2-based enhanced geothermal systems considering CO2 sequestration

Journal

ENERGY
Volume 142, Issue -, Pages 157-167

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2017.09.139

Keywords

Enhanced geothermal systems; Heat extraction; CO2 sequestration; Fluid loss; Surrounding formation permeability

Funding

  1. Fundamental Research Funds for the Central Universities
  2. China Postdoctoral Science Foundation

Ask authors/readers for more resources

CO2-based enhanced geothermal systems (EGS) are being widely studied due to great heat extraction and additional CO2 sequestration. However, the existing studies ignored surrounding formation permeability and approximately calculated CO2 sequestration based on flow tests of water-based EGS. In this paper, heat extraction and CO2 sequestration in a CO2-based EGS were simulated simultaneously based on a developed 3D thermal-hydrologic model, and the CO2-based EGS was compared to the water-based EGS for different reservoir permeability parameters, geothermal gradients and surrounding formation permeabilities. The CO2-based EGS has greater heat extraction than the water-based EGS, and the advantage of CO2-based EGS is larger for higher surrounding formation permeability, lower average reservoir permeability and lower initial reservoir temperature. Compared with water-based EGS, the CO2-based EGS has higher fluid loss rate and much higher production flow rate, which results in lower fluid loss ratio especially at low average reservoir permeability and initial reservoir temperature, indicating that it is not accurate to evaluate CO2 sequestration based on experimental data of water-based EGS. For CO2-based EGS, as surrounding formation permeability increases, CO2 sequestration amount increases, and heat extraction rate decreases slowly, showing that surrounding formation permeability has important influences on CO2 sequestration and heat extraction. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available