4.5 Review

A Review of Experiments and Modeling of Gas-Liquid Flow in Electrical Submersible Pumps

Journal

ENERGIES
Volume 11, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/en11010180

Keywords

electrical submersible pump (ESP); multiphase flow; mechanistic modeling; CFD; flow pattern; viscosity effect; drag coefficient; bubble size; in-situ gas void fraction

Categories

Funding

  1. Tulsa University Artificial Lift Projects (TUALP) member companies
  2. National Natural Science Foundation-Outstanding Youth Foundation [51622405]

Ask authors/readers for more resources

As the second most widely used artificial lift method in petroleum production (and first in produced amount), electrical submersible pump (ESP) maintains or increases flow rate by converting kinetic energy to hydraulic pressure of hydrocarbon fluids. To facilitate its optimal working conditions, an ESP has to be operated within a narrow application window. Issues like gas involvement, changing production rate and high oil viscosity, greatly impede ESP boosting pressure. Previous experimental studies showed that the presence of gas would cause ESP hydraulic head degradation. The flow behaviors inside ESPs under gassy conditions, such as pressure surging and gas pockets, further deteriorate ESP pressure boosting ability. Therefore, it is important to know what parameters govern the gas-liquid flow structure inside a rotating ESP and how it can be modeled. This paper presents a comprehensive review on the key factors that affect ESP performance under gassy flow conditions. Furthermore, the empirical and mechanistic models for predicting ESP pressure increment are discussed. The computational fluid dynamics (CFD)-based modeling approach for studying the multiphase flow in a rotating ESP is explained as well. The closure relationships that are critical to both mechanistic and numerical models are reviewed, which are helpful for further development of more accurate models for predicting ESP gas-liquid flow behaviors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available