4.5 Article

Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell

Journal

ENERGIES
Volume 11, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/en11010124

Keywords

microbial fuel cell; cellulose; microbial community changes; air-cathode microbial fuel cell

Categories

Funding

  1. MINIATURA grant from The National Science Centre [2017/01/X/NZ9/00653]

Ask authors/readers for more resources

The abundance of cellulosic wastes make them attractive source of energy for producing electricity in microbial fuel cells (MFCs). However, electricity production from cellulose requires obligate anaerobes that can degrade cellulose and transfer electrons to the electrode (exoelectrogens), and thus most previous MFC studies have been conducted using two-chamber systems to avoid oxygen contamination of the anode. Single-chamber, air-cathode MFCs typically produce higher power densities than aqueous catholyte MFCs and avoid energy input for the cathodic reaction. To better understand the bacterial communities that evolve in single-chamber air-cathode MFCs fed cellulose, we examined the changes in the bacterial consortium in an MFC fed cellulose over time. The most predominant bacteria shown to be capable electron generation was Firmicutes, with the fermenters decomposing cellulose Bacteroidetes. The main genera developed after extended operation of the cellulose-fed MFC were cellulolytic strains, fermenters and electrogens that included: Parabacteroides, Proteiniphilum, Catonella and Clostridium. These results demonstrate that different communities evolve in air-cathode MFCs fed cellulose than the previous two-chamber reactors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available