4.5 Article

Hybrid Communication Architectures for Distributed Smart Grid Applications

Journal

ENERGIES
Volume 11, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/en11040871

Keywords

hybrid communication architecture; smart grid communication; distributed smart grid applications; NS3 simulator; PLC; LoWPAN; WiFi Mesh; WiMAX; Ethernet

Categories

Funding

  1. U.S. Department of Energy [DE-AC36-08GO28308]
  2. Alliance for Sustainable Energy, LLC
  3. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office

Ask authors/readers for more resources

Wired and wireless communications both play an important role in the blend of communications technologies necessary to enable future smart grid communications. Hybrid networks exploit independent mediums to extend network coverage and improve performance. However, whereas individual technologies have been applied in simulation networks, as far as we know there is only limited attention that has been paid to the development of a suite of hybrid communication simulation models for the communications system design. Hybrid simulation models are needed to capture the mixed communication technologies and IP address mechanisms in one simulation. To close this gap, we have developed a suite of hybrid communication system simulation models to validate the critical system design criteria for a distributed solar Photovoltaic (PV) communications system, including a single trip latency of 300 ms, throughput of 9.6 Kbps, and packet loss rate of 1%. The results show that three low-power wireless personal area network (LoWPAN)-based hybrid architectures can satisfy three performance metrics that are critical for distributed energy resource communications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available