4.5 Article

High-Mobility Group Box 1 Mediates Epithelial-to-Mesenchymal Transition in Pulmonary Fibrosis Involving Transforming Growth Factor-β1/Smad2/3 Signaling

Journal

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.114.222372

Keywords

-

Funding

  1. National Science Foundation of China [81274172, 81473267, 30801535]

Ask authors/readers for more resources

Epithelial-to-mesenchymal transition (EMT) is a crucial event in the cellular origin of myofibroblasts that secrete extracellular matrix in the progression of pulmonary fibrosis (PF). High-mobility group box 1 (HMGB1) is a novel mediator of EMT. However, whether this process involves the recognized transforming growth factor-beta 1 (TGF-beta 1)/Smad signaling that also contributes to EMT in PF has not yet been elucidated. Here, we developed a model of PF induced by bleomycin (BLM) in rats and conducted several simulation experiments in A549 (human) and RLE-6TN (rat) alveolar epithelial cell (AEC) lines to unravel the role of TGF-beta 1/Smad2/3 signaling in HMGB1-mediated EMT. We found that the levels of serum HMGB1 and lung hydroxyproline were severely elevated after BLM administration. Moreover, the protein expression of HMGB1, TGF-beta 1, phosphorylated Smad2/3 (p-Smad2/3), and mesenchymal markers including alpha-smooth muscle actin, vimentin, and type I collagen were significantly increased with the reduced protein expression of an epithelial marker (E-cadherin) in the rat model by Western blot or immunohistochemical analysis. In addition, the uptake of both exogenous TGF-beta 1 and HMGB1 by AECs could induce EMT; meanwhile, HMGB1 dramatically enhanced TGF-beta 1 expression and triggered Smad2/3 phosphorylation. In contrast, TGF-beta 1 deficiency evidently ameliorated HMGB1-mediated EMT with reduced p-Smad2/3 in A549 cells. It provides new insights that HMGB1 release from injured lungs promotes AEC damage through induction of the EMT process, in which TGF-beta 1/Smad2/3 signaling is activated and contributes to PF. These results suggest that HMGB1 may constitute a therapeutic target for developing antifibrotic agents for abnormal lung remodeling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available