4.7 Article

Coastal Flood Assessment Based on Field Debris Measurements and Wave Runup Empirical Model

Journal

JOURNAL OF MARINE SCIENCE AND ENGINEERING
Volume 3, Issue 3, Pages 560-590

Publisher

MDPI
DOI: 10.3390/jmse3030560

Keywords

storm surge; wave runup; coastal flood mapping; coastal defense

Funding

  1. Quebec government

Ask authors/readers for more resources

On 6 December 2010, an extra-tropical storm reached Atlantic Canada, causing coastal flooding due to high water levels being driven toward the north shore of Chaleur Bay. The extent of flooding was identified in the field along the coastline at Maria using DGPS. Using the assumption that the maximum elevation of flooded areas represents the combination of astronomical tide, storm surge and wave runup, which is the maximum elevation reached by the breaking waves on the beach, all flood limits were identified. A flood-zone delineation was performed using GIS and LiDAR data. An empirical formula was used to estimate runup elevation during the flood event. A coastal flood map of the 6 December flood event was made using empirical data and runup calculations according to offshore wave climate simulations. Along the natural beach, results show that estimating runup based on offshore wave data and upper foreshore beach slope represents well the observed flood extent. Where a seawall occupies the beach, wave breaking occurs at the toe of the structure and wave height needs to be considered independently of runup. In both cases (artificial and natural), flood risk is underestimated if storm surge height alone is considered. There is a need to incorporate wave characteristics in order to adequately model potential flood extent. A coastal flooding projection is proposed for Pointe Verte based on total water levels estimated according to wave climate simulation return periods and relative sea-level rise for the Chaleur Bay.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available