4.6 Article

Characterization of poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) nanofiber membrane based quasi solid electrolytes and their application in a dye sensitized solar cell

Journal

ELECTROCHIMICA ACTA
Volume 266, Issue -, Pages 276-283

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2018.02.025

Keywords

Dye sensitized solar cells; PVdF-HFP co-polymer; Nanofiber; Gel polymer electrolyte; FTIR spectroscopy

Funding

  1. Carl Tryggers Foundation for Scientific Research
  2. Swedish Research Council
  3. Magnus Bergvalls Stiftelse

Ask authors/readers for more resources

The electrolyte plays a major role in dye sensitized solar cells (DSSCs). In this work a quasi-solid state (gel) electrolyte has been formed by incorporating a liquid electrolyte made with KI dissolved in ethylene carbonate (EC) and propylene carbonate (PC) co-solvent in poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) co-polymer nanofiber membrane prepared by electrospinning. SEM images of the electrolyte membrane showed the formation of a three-dimensional network of polymer nanofibers with diameters between 100 and 300 nm and an average membrane thickness of 14 mu m. The electrolyte was characterized by FTIR and differential scanning calorimetry (DSC) measurements. The DSSCs fabricated with this electrolyte were characterized by current-voltage and Electrochemical Impedance Spectroscopy (EIS) measurements. DSC thermograms revealed that the crystallinity of the PVdF-HFP nanofiber is 14% lower than that of the pure PVdF-HFP polymer while the FTIR spectra showed a reduced polymer-polymer interaction in the nano fiber based gel electrolyte. The DSSCs fabricated with nanofiber based gel electrolyte showed an energy conversion efficiency of 5.36% under 1.5 a. m. solar irradiation, whereas the efficiency of the DSSC made with the liquid electrolyte based cell was 6.01%. This shows the possibility of replacing the liquid electrolyte in DSSCs by electro-spun polymer nanofiber based gel electrolyte and thereby minimizing some major drawbacks associated with liquid electrolyte based solar cells while maintaining a reasonably high efficiency. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available