4.6 Article

Electrolyte cation length influences electrosorption and dynamics in porous carbon supercapacitors

Journal

ELECTROCHIMICA ACTA
Volume 283, Issue -, Pages 882-893

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2018.06.200

Keywords

Supercapacitor; Ionic liquid; Molecular dynamics; Density functional theory; Neutron scattering

Funding

  1. Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences
  2. DOE Office of Science Graduate Student Research Fellowship (SCGSR)
  3. U.S. DOE [DE-AC05-00OR22725]
  4. Office of Science of the U.S. Department of Energy [DE-AC02-5CH11231]

Ask authors/readers for more resources

We investigate the extent to which the alkyl chain on the cation of an imidazolium-based neat room temperature ionic liquid influences mobility and electrochemical behavior in nanoporous super capacitors. Changing the cation chain length from an ethyl (n = 2) to a butyl (n = 4) to a hexyl (n = 6) group affects the electrolyte dynamics and their accumulation densities under dynamic charge-discharge processes. We relied on molecular dynamics (MD) computational simulations and classical density functional theory (cDFT) calculations of our system to reinforce the experimental results obtained from electrochemical measurements and quasi-elastic neutron scattering (QENS). We contrast the different dynamics of ionic liquids in bulk and confined states and demonstrate the effect of the cation dimension on resulting arrangements of positive and negative ions in pores. We correlate these fundamental properties with device performance metrics in an effort to properly tailor high-performance carbon supercapacitor electrodes with non-flammable and electrochemically stable electrolytes. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available