4.6 Article

ZnO nanoparticles encapsulated in three dimensional ordered macro-/mesoporous carbon as high-performance anode for lithium-ion battery

Journal

ELECTROCHIMICA ACTA
Volume 270, Issue -, Pages 274-283

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2018.03.073

Keywords

Lithium-ion battery; Anode; ZnO nanoparticles; Macro-/mesoporous carbon

Funding

  1. National Natural Science Foundation of China [21606068, 21676018]
  2. Natural Science Foundation of Tianjin of China [17JCQNJC06300]
  3. Natural Science Foundation of Hebei Province of China [B2016202140]
  4. Scientific Innovation Grant for Excellent Young Scientists of Hebei University of Technology [2015001]

Ask authors/readers for more resources

Herein, we report a three-dimensionally (3D) ordered macro-/mesoporous carbon (3DOM-mC) as the ZnO nanoparticles support for the anode material in lithium-ion batteries (LIBs). The 3DOM-mC is synthesized by the typical dual-templating method that combines the hard-templating (silica opal as template) and soft-templating techniques using resol (phenol/formaldehyde) as the carbon source. The prepared 3DOM-mC material having ordered interconnected macropores and mesopores is then applied to support ZnO nanoparticles to form the ZnO/3DOM-mC composite via a simple in situ solution growth approach. In the ZnO/3DOM-mC composite, the ZnO nanoparticles (similar to 4.5 nm) are evenly dispersed on the macropore walls of the 3DOM-mC. The ZnO/3DOM-mC composite (40 wt% ZnO loading) anode shows an enhanced LIB performance delivering a specific capacity of 973.3 mAh g(-1) after 100 cycles and 1396.6 mAh g(-1) after 300 cycles at 0.1 C. This good electrochemical performance of the ZnO/3DOM-mC is ascribed to the ordered interconnected macropores of the 3DOM-mC that can provide the rapid diffusion of Li ions and electrolytes and the ordered mesopores that can buffer the volume expansion of ZnO during the cycling operation. (c) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available