4.6 Article

N/S co-doped three-dimensional graphene hydrogel for high performance supercapacitor

Journal

ELECTROCHIMICA ACTA
Volume 278, Issue -, Pages 51-60

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2018.05.018

Keywords

N/S co-doped three dimensional (3D) graphene hydrogel (N/S-3DGH); Electrode materials; Supercapacitive performance; All-symmetric solid-state supercapacitor

Funding

  1. MOST [2017YFA0205800]
  2. National Natural Science Foundation of China [21173041]
  3. Opening Project of Jiangsu Key Laboratory of Advanced Metallic Materials, China
  4. Project of Jiangsu Key Laboratory for Clad Materials, China [BM2014006]

Ask authors/readers for more resources

Doping and high specific area are essential to the performance of supercapacitor electrode materials. However, the conventional single doping in two dimensional electrode materials is still unable to get high supercapacitive performance. Here we report a facile hydrothermal process using ammonia as a source of nitrogen (N) and thiourea as a sulfur (S) source to prepare N/S co-doped three dimensional (3D) graphene hydrogel (N/S-3DGH) for supercapacitor electrode application. The as-prepared N/S3DGH is uniform and stable. The N/S co-doped 3DGH electrode material exhibits a high specific capacity of 1063 Cg(-1) at a current density of 1 Ag-1. Even at a density of 20 Ag-1, it can still hold an excellent charge and discharge cycling stability, and with 76% of initial capacity retained after 6000 charge and discharge cycles at a density of 10 Ag-1. Moreover, the all-symmetric solid-state supercapacitor fabricated by N/S-3DGH without any binders owned an energy density of 6.25 Wh kg(-1) at a power density of 500 Wkg(-1) showing very promising applications for portable power and flexible energy storage devices. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available