4.6 Article

PMU-based voltage stability prediction using least square support vector machine with online learning

Journal

ELECTRIC POWER SYSTEMS RESEARCH
Volume 160, Issue -, Pages 234-242

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.epsr.2018.02.018

Keywords

Short-term voltage stability; Composite load model; PMU measurements; Trajectory extrapolation; Unstable equilibrium point

Funding

  1. National Natural Science Foundation of China [51177093]

Ask authors/readers for more resources

Composite load model comprising an impedance-current-power (ZIP) load and an induction motor (IM) is widely used for dynamic voltage stability analysis. With the load model, this paper proposes a new PMU-based method to predict short-term voltage instability (STVIS). Using synchronous measurements, the method firstly performs online contingency analysis to obtain a set of three-element look-up tables comprising the presumed contingency, the corresponding post-fault stable and unstable equilibrium point (SEP and UEP) for each IM load individually. Next, when a fault really occurs, the time-series of IM slip is computed by an Euler algorithm based on local PMU measurements, and then a new time-series prediction method is proposed for rolling prediction of IM slip trajectory by introducing least square support vector machine (LSSVM) with online learning. Finally, from the view of IM stability mechanism, the STVIS status can be detected in advance by monitoring that the predicted slip trajectory reaches the IM's UEP in the look-up table. The effectiveness of the proposed method is verified on the New England 39-bus system. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available