4.7 Article

Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite

Publisher

ELSEVIER - DIVISION REED ELSEVIER INDIA PVT LTD
DOI: 10.1016/j.jestch.2015.01.007

Keywords

Dimensional analysis; Grey-PCA; Metal matrix composite; Modeling; Multi-objective optimization; Powder mixed electric discharge machining

Ask authors/readers for more resources

Low material removal rate (MRR) and high surface roughness values hinder large-scale application of electro discharge machining (EDM) in the fields like automobile, aerospace and medical industry. In recent years, however, EDM has gained more significance in these industries as the usage of difficult-to-machine materials including metal matrix composites (MMCs) increased. In the present work, an attempt has been made to fabricate and machine aluminum/alumina MMC using EDM by adding aluminum powder in kerosene dielectric. Results showed an increase in MRR and decrease in surface roughness (R-a) compared to those for conventional EDM. Semi empirical models for MRR and R-a based on machining parameters and important thermo physical properties were established using a hybrid approach of dimensional and regression analysis. A multi response optimization was also performed using principal component analysis-based grey technique (Grey-PCA) to determine optimum settings of process parameters for maximum MRR and minimum R-a within the experimental range. The recommended setting of process parameters for the proposed process has been found to be powder concentration (C-p) = 4 g/l, peak current (I-p) = 3 A, pulse on time (T-on) = 150 mu s and duty cycle (T-au) = 85%. (C) 2015 Karabuk University. Production and hosting by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available