4.7 Article

Consumption explains intraspecific variation in nutrient recycling stoichiometry in a desert fish

Journal

ECOLOGY
Volume 99, Issue 7, Pages 1552-1561

Publisher

WILEY
DOI: 10.1002/ecy.2372

Keywords

Chihuahuan desert; desert spring; ecological stoichiometry; elemental phenotype; excretion; mosquitofish

Categories

Funding

  1. TE Inc.
  2. Desert Fishes Council Conservation Award
  3. Society for Freshwater Science Endowment Award
  4. Arizona State University School of Life Sciences Research & Training Initiatives Facilities Grants
  5. Smithsonian Tropical Research Institute

Ask authors/readers for more resources

Consumer-driven nutrient recycling can have substantial effects on primary production and patterns of nutrient limitation in aquatic ecosystems by altering the rates as well as the relative supplies of the key nutrients nitrogen (N) and phosphorus (P). While variation in nutrient recycling stoichiometry has been well-studied among species, the mechanisms that explain intraspecific variation in recycling N:P are not well-understood. We examined the relative importance of potential drivers of variation in nutrient recycling by the fish Gambusia marshi among aquatic habitats in the Cuatro Cienegas basin of Coahuila, Mexico. There, G.marshi inhabits warm thermal springs with high predation pressure as well as cooler, surface runoff-fed systems with low predation pressure. We hypothesized that variation in food consumption among these habitats would drive intraspecific differences in excretion rates and N:P ratios. Stoichiometric models predicted that temperature alone should not cause substantial variation in excretion N:P, but that further reducing consumption rates should substantially increase excretion N:P. We performed temperature and diet ration manipulation experiments in the laboratory and found strong support for model predictions. We then tested these predictions in the field by measuring nutrient recycling rates and ratios as well as body stoichiometry of fish from nine sites that vary in temperature and predation pressure. Fish from warm, high-predation sites excreted nutrients at a lower N:P ratio than fish from cool, low-predation sites, consistent with the hypothesis that reduced consumption under reduced predation pressure had stronger consequences for P retention and excretion among populations than did variation in body stoichiometry. These results highlight the utility of stoichiometric models for predicting variation in consumer-driven nutrient recycling within a phenotypically variable species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available