4.3 Article

Ontogenetic changes in anti-herbivore defensive traits in leaves of four Mediterranean co-occurring Quercus species

Journal

ECOLOGICAL RESEARCH
Volume 33, Issue 6, Pages 1093-1102

Publisher

SPRINGER JAPAN KK
DOI: 10.1007/s11284-018-1622-0

Keywords

Herbivory levels; Leaf chemical defence; Leaf mechanical defence; Ontogenetic changes; Quercus

Categories

Funding

  1. University of Salamanca [18 KA38]

Ask authors/readers for more resources

Investment in anti-herbivore defence in tree species has been one of the priority research topics in plant terrestrial ecology during the last decades. However, despite considerable experimental effort, interspecific differences in the ontogenetic trends in the investment in defence are still a matter of debate, as to date experimental evidence is contradictory. In the present work, insect herbivory levels were measured in seedlings and mature trees of four co-occurring Mediterranean Quercus species with differing leaf life spans, as well as several leaf characteristics that can determine herbivore preference. The measured leaf traits included nitrogen (N), fibre (cellulose, hemicellulose and lignin), total phenolic contents, leaf mass per unit area (LMA) and leaf thickness. The leaves of seedlings had a lower LMA and leaf thickness and lower concentrations of N and cellulose, but higher concentrations of lignin and phenols than those of mature trees. However, the loss of leaf area tended to be more severe for seedlings than for mature trees, although the differences were only significant for deciduous species. This constitutes a confirmation of the strong effects of physical traits on herbivore preferences. The greater resource limitations for defensive mechanisms in seedlings with respect to mature trees would explain that at intraspecific level we do observe a compromise between chemical and physical defences. As a result, seedlings rely on chemical rather than on physical defences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available