4.7 Article

Accumulation of arsenic, mercury and heavy metals in lacustrine sediment in relation to eutrophication: Impacts of sources and climate change

Journal

ECOLOGICAL INDICATORS
Volume 93, Issue -, Pages 771-780

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ecolind.2018.05.059

Keywords

Lake sediments; Eutrophication; Climate change; Mercury; Arsenic; Heavy metals; Trophic status

Funding

  1. National Key Research and Development Program of China [2017YFA0605003]
  2. National Natural Science Foundation of China [91751114, 41521003]

Ask authors/readers for more resources

Information on both the climate change and anthropogenic activities on lacustrine ecosystem is of crucial importance for understanding the current state and future development of lake systems. The sediment profiles of arsenic, mercury, other metals, and nutrients were used to investigate climate change and anthropogenic activities impacts on three lakes located on the Yunnan-Guizhou Plateau (Lake Chenghai, Qionghai) and Northeastern Plain region (Lake Jingpohu) of China. The enrichment factor (EF), geoaccumulation index (I-geo) and anthropogenic factor (AF) were used to assess the enrichment degree of metals. The results show that these lakes have been progressively eutrophied since the development of widespread industrialization and urbanization in these areas. The enrichment of heavy metals is generally not serious (EF < 1.5, I-geo < 0), except for Cd, Pb, and Hg in Lakes Chenghai and Qionghai. Correlation analysis shows that generally, the heavy metals characterized had significant correlations with nutrient concentrations (TOC, delta C-13, TP), which implied the establishment of geochemical associations during transport, that they had similar anthropogenic sources (such as fertilizers), or both. Cluster analysis grouped nutrients, As, and most other metals (except Ca, Mg, Fe, Al), the annual average temperature, and annual precipitation into one category. Increases in both average annual air temperatures and total precipitation are likely influencing the input of heavy metals and nutrients to these lakes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available