4.5 Article

Inhibition of galectin-3 ameliorates the consequences of cardiac lipotoxicity in a rat model of diet-induced obesity

Journal

DISEASE MODELS & MECHANISMS
Volume 11, Issue 2, Pages -

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dmm.032086

Keywords

Galectin-3; Insulin resistance; Lipotoxicity; Mitochondria; Obesity; Oxidative stress

Funding

  1. Instituto de Salud Carlos III - European Regional Development Fund (Fondo Europeo de Desarrollo Regional) [PI15/01060]
  2. Ministerio de Economia y Competitividad [SAF2012-34460, SAF2016-81063]
  3. FPI Program del Gobierno de Castilla y Leon (FSE)
  4. Miguel Servet grant from the Instituto de Salud Carlos III European Regional Development Fund (Fondo Europeo de Desarrollo Regional), a way to build Europe, Fondo de Investigaciones Sanitarias [CP13/00221, PI15/02160]

Ask authors/readers for more resources

Obesity is accompanied by metabolic alterations characterized by insulin resistance and cardiac lipotoxicity. Galectin-3 (Gal-3) induces cardiac inflammation and fibrosis in the context of obesity; however, its role in the metabolic consequences of obesity is not totally established. We have investigated the potential role of Gal-3 in the cardiac metabolic disturbances associated with obesity. In addition, we have explored whether this participation is, at least partially, acting on mitochondrial damage. Gal-3 inhibition in rats that were fed a high-fat diet (HFD) for 6 weeks with modified citrus pectin (MCP; 100 mg/kg/day) attenuated the increase in cardiac levels of total triglyceride (TG). MCP treatment also prevented the increase in cardiac protein levels of carnitine palmitoyl transferase IA, mitofusin 1, and mitochondrial complexes I and II, reactive oxygen species accumulation and decrease in those of complex V but did not affect the reduction in F-18-fluorodeoxyglucose uptake observed in HFD rats. The exposure of cardiac myoblasts (H9c2) to palmitic acid increased the rate of respiration, mainly due to an increase in the proton leak, glycolysis, oxidative stress, beta-oxidation and reduced mitochondrial membrane potential. Inhibition of Gal-3 activity was unable to affect these changes. Our findings indicate that Gal-3 inhibition attenuates some of the consequences of cardiac lipotoxicity induced by a HFD since it reduced TG and lysophosphatidyl choline (LPC) levels. These reductions were accompanied by amelioration of the mitochondrial damage observed in HFD rats, although no improvement was observed regarding insulin resistance. These findings increase the interest for Gal-3 as a potential new target for therapeutic intervention to prevent obesity-associated cardiac lipotoxicity and subsequent mitochondrial dysfunction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available