4.6 Article

From a bio-based phosphorus-containing epoxy monomer to fully bio-based flame-retardant thermosets

Journal

RSC ADVANCES
Volume 5, Issue 87, Pages 70856-70867

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra12859e

Keywords

-

Ask authors/readers for more resources

In this work, phloroglucinol was used as a renewable resource to prepare an epoxy monomer and phosphorus containing reactive flame retardant (FR). These building blocks were reacted with diamines to obtain partly or fully bio-based flame retardant epoxy resins. It was highlighted that the glass transition temperature of the materials was tightly related to the functionality of the reactive monomers and the resulting crosslink density. Thermal stability and char yield of the thermosets seems to be mainly governed by the aromaticity of the monomers, the linking rate of the aromatic ring and the phosphorus content. Phosphorus FR are more efficient in intrinsically poorly charring matrices. It was evidenced that the flammability of bio-based epoxies can be monitored by two strategies: (i) choosing bio-based monomers with high charring ability and low combustion energy, (ii) incorporating bio-based phosphorus-containing reactive FR in the polymer network.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available