4.5 Article

Real-world flash glucose monitoring patterns and associations between self-monitoring frequency and glycaemic measures: A European analysis of over 60 million glucose tests

Journal

DIABETES RESEARCH AND CLINICAL PRACTICE
Volume 137, Issue -, Pages 37-46

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.diabres.2017.12.015

Keywords

Flash glucose monitoring; Blood glucose monitoring frequency; Real-world data; Glycaemic measures

Funding

  1. Abbott Diabetes Care
  2. National Institute for Health Research [PB-PG-0815-20011] Funding Source: researchfish

Ask authors/readers for more resources

Aims: Randomised controlled trials demonstrate that using flash glucose monitoring improves glycaemic control but it is unclear whether this applies outside trial conditions. We investigated glucose testing patterns in users worldwide under real life settings to establish testing frequency and association with glycaemic parameters. Methods: Glucose results were de-identified and uploaded onto a dedicated database once readers were connected to an internet-ready computer. Data between September 2014 and May 2016, comprising 50,831 readers and 279,446 sensors worldwide, were analysed. Scan rate per reader was determined and each reader was sorted into twenty equally-sized rank-ordered groups, categorised by scan frequency. Glucose parameters were calculated for each group, including estimated HbA(1c), time above, below and within range identified as 3.9-10.0 mmol/L. Results: Users performed a mean of 16.3 scans/day [median (IQR): 14 (10-20)] with 86.4 million hours of readings and 63.8 million scans. Estimated HbA(1c) gradually reduced from 8.0% to 6.7% (64 to 50 mmol/mol) as scan rate increased from lowest to highest scan groups (4.4 and 48.1 scans/day, respectively; p < .001). Simultaneously, time below 3.9, 3.1 and 2.5 mmol/L decreased by 15%, 40% and 49%, respectively (all p < .001). Time above 10.0 mmol/L decreased from 10.4 to 5.7 h/day (44%, p < .001) while time in range increased from 12.0 to 16.8 h/day (40%, p < .001). These patterns were consistent across different countries. Conclusions: In real-world conditions, flash glucose monitoring allows frequent glucose checks with higher rates of scanning linked to improved glycaemic markers, including increased time in range and reduced time in hyper and hypoglycaemia. (C) 2017 Abbott Diabetes Care. Published by Elsevier Ireland Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available