4.7 Article

Loss of OcaB Prevents Age-Induced Fat Accretion and Insulin Resistance by Altering B-Lymphocyte Transition and Promoting Energy Expenditure

Journal

DIABETES
Volume 67, Issue 7, Pages 1285-1296

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db17-0558

Keywords

-

Funding

  1. Canadian Institutes of Health Research (CIHR) [FRN-14813, MOP-110992]
  2. Fonds de Recherche du Quebec-Sante (FRQS)
  3. FRQS

Ask authors/readers for more resources

The current demographic shift toward an aging population has led to a robust increase in the prevalence of age-associated metabolic disorders. Recent studies have demonstrated that the etiology of obesity-related insulin resistance that develops with aging differs from that induced by high-calorie diets. Whereas the role of adaptive immunity in changes in energy metabolism driven by nutritional challenges has recently gained attention, its impact on aging remains mostly unknown. Here we found that the number of follicular B2 lymphocytes and expression of the B-cell-specific transcriptional coactivator OcaB increase with age in spleen and in intra-abdominal epididymal white adipose tissue (eWAT), concomitantly with higher circulating levels of IgG and impaired glucose homeostasis. Reduction of B-cell maturation and Ig productionespecially that of IgG2cby ablation of OcaB prevented age-induced glucose intolerance and insulin resistance and promoted energy expenditure by stimulating fatty acid utilization in eWAT and brown adipose tissue. Transfer of wild-type bone marrow in OcaB(-/-) mice replenished the eWAT B2-cell population and IgG levels, which diminished glucose tolerance, insulin sensitivity, and energy expenditure while increasing body weight gain in aged mice. Thus these findings demonstrate that upon aging, modifications in B-cell-driven adaptive immunity contribute to glucose intolerance and fat accretion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available