4.6 Article

The two sides of the C-factor

Journal

DENTAL MATERIALS
Volume 34, Issue 4, Pages 649-656

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.dental.2018.01.013

Keywords

Dental composites; C-factor; Shrinkage stress; Compliance; Poisson's ratio

Funding

  1. National Natural Science Foundation of China [81628005]

Ask authors/readers for more resources

Objective. The aim of this paper is to investigate the effects on shrinkage strain/stress development of the lateral constraints at the bonded surfaces of resin composite specimens used in laboratory measurement. Methods. Using three-dimensional (3D) Hooke's law, a recently developed shrinkage stress theory is extended to 3D to include the additional out-of-plane strain/stress induced by the lateral constraints at the bonded surfaces through the Poisson's ratio effect. The model contains a parameter that defines the relative thickness of the boundary layers, adjacent to the bonded surfaces, that are under such multiaxial stresses. The resulting differential equation is solved for the shrinkage stress under different boundary conditions. The accuracy of the model is assessed by comparing the numerical solutions with a wide range of experimental data, which include those from both shrinkage strain and shrinkage stress measurements. Results. There is good agreement between theory and experiments. The model correctly predicts the different instrument-dependent effects that a specimen's configuration factor (C-factor) has on shrinkage stress. That is, for noncompliant stress-measuring instruments, shrinkage stress increases with the C-factor of the cylindrical specimen; while the opposite is true for compliant instruments. The model also provides a correction factor, which is a function of the C-factor, Poisson's ratio and boundary layer thickness of the specimen, for shrinkage strain measured using the bonded-disc method. For the resin composite examined, the boundary layers have a combined thickness that is similar to 115% of the specimen's diameter. Published by Elsevier Ltd on behalf of The Academy of Dental Materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available