4.7 Article

Constructing a ZnIn2S4 nanoparticle/MoS2-RGO nanosheet 0D/2D heterojunction for significantly enhanced visible-light photocatalytic H-2 production

Journal

DALTON TRANSACTIONS
Volume 47, Issue 19, Pages 6800-6807

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8dt00946e

Keywords

-

Funding

  1. National Natural Science Foundation of China [51702087, 21673066, 21703054]
  2. Program for Science & Technology Innovation Talents [15HASTIT043]
  3. Innovative Research Team from University of Henan Province [16IRTSTHN015]

Ask authors/readers for more resources

A zero-dimensional (0D)/two-dimensional (2D) heterojunction has an excellent advantage of boosting the photo-generated carrier separation and obtaining enhanced photocatalytic activities. Here, a ZnIn2S4 nanoparticle/MoS2-RGO nanosheet 0D/2D heterojunction was prepared by a rapid and low temperature hydrothermal method. TEM characterization results reveal that ZnIn2S4 nanoparticles are uniformly dispersed on the surface of MoS2-RGO nanosheets, which can provide abundant active sites and shorten the charge-migration distance, while the MoS2-RGO nanosheet acts as a support to avoid the aggregation of 0D ZnIn2S4 nanoparticles and also serves as a low-cost cocatalyst for effective hydrogen evolution. Through optimizing the MoS2-RGO composition and content, the highest hydrogen evolution rate of 425.1 mu mol g(-1) h(-1) was obtained over the ZnIn2S4/MoS2-RGO 0D/2D heterojunction photocatalyst under visible light irradiation (lambda > 420 nm), which is about 34.6 times higher than that of pure ZnIn2S4. Efficient charge separation can be attributed to the significantly enhanced photocatalytic performance, which originates from the favorable properties of the ZnIn2S4/MoS2-RGO 0D/2D heterojunction. This study provides an effective method to improve the photocatalytic performance of the ZnIn2S4 photocatalyst based on the 0D/2D heterojunction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available