4.2 Review

The manifold role of the mitochondria in skeletal muscle insulin resistance

Journal

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/MCO.0000000000000480

Keywords

lipid; mitochondria; muscle; reactive oxygen species; signalling

Funding

  1. National Institutes of Health [HL107406-01A1, DK 56341, UL1 RR024992]

Ask authors/readers for more resources

Purpose of reviewThe role of mitochondria in the development of skeletal muscle insulin resistance has been an area of intense investigation and debate for over 20 years. The mitochondria is a multifaceted organelle that plays an integral part in substrate metabolism and cellular signalling. This article aims to summarize the current findings and thought regarding the relationship between mitochondria and insulin resistance in skeletal muscle.Recent findingsSkeletal muscle insulin resistance was earlier thought to result from deficiency in mitochondrial oxidative capacity and ectopic lipid accumulation. Recent evidence suggests that skeletal muscle insulin resistance in high-energy intake models (i.e. obesity) results primarily from disrupted mitochondrial bioenergetics and alterations in mitochondrial-associated cell signalling. These signalling pathways include reactive oxygen species and redox balance, fatty acid -oxidation intermediates, mitochondrial derived peptides, sirtuins, microRNAs and novel nuclear-encoded, mitochondria-acting peptides.SummaryThe pathophysiology of skeletal muscle insulin resistance is likely multifactorial involving many coordinated physiological processes. However, it is apparent that the mitochondria play an essential role in skeletal muscle insulin sensitivity in health, ageing and in numerous metabolic diseases. Deciphering the manifold functions of the mitochondria will allow us to understand the complex relationship between mitochondria and skeletal muscle insulin resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available