4.6 Article

In Silico Studies Targeting G-protein Coupled Receptors for Drug Research Against Parkinsons Disease

Journal

CURRENT NEUROPHARMACOLOGY
Volume 16, Issue 6, Pages 786-848

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1570159X16666180308161642

Keywords

Parkinson's disease; G-protein-coupled receptors; drug design; ligand-docking; quantitative structure-activity relationships; pharmacophore

Funding

  1. Fundacao para a Ciencia e a Tecnologia (FCT/MEC)
  2. FEDER [UID/QUI/50006/2013, POCI/01/0145/FEDER/007265]
  3. FCT-Investigator programme [IF/00578/2014]
  4. European Social Fund
  5. Programa Operacional Potencial Humano
  6. Marie Sklodowska-Curie Individual Fellowship MSCA-IF-2015 [MEMBRANEPROT 659826]
  7. FEDER (Programa Operacional Factores de Competitividade - COMPETE 2020)
  8. FCT-project [UID/NEU/04539/2013]
  9. FCT [SFRH/BPD/97650/2013, UID/Multi/04349/2013, SFRH/BSAB/127789/2016]

Ask authors/readers for more resources

Parkinson's Disease (PD) is a long-term neurodegenerative brain disorder that mainly affects the motor system. The causes are still unknown, and even though currently there is no cure, several therapeutic options are available to manage its symptoms. The development of novel anti-parkinsonian agents and an understanding of their proper and optimal use are, indeed, highly demanding. For the last decades, L-3,4-DihydrOxyPhenylAlanine or levodopa (L-DOPA) has been the gold-standard therapy for the symptomatic treatment of motor dysfunctions associated to PD. However, the development of dyskinesias and motor fluctuations (wearing-off and on-off phenomena) associated with long-term L-DOPA replacement therapy have limited its antiparkinsonian efficacy. The investigation for non-dopaminergic therapies has been largely explored as an attempt to counteract the motor side effects associated with dopamine replacement therapy. Being one of the largest cell membrane protein families, G-Protein-Coupled Receptors (GPCRs) have become a relevant target for drug discovery focused on a wide range of therapeutic areas, including Central Nervous System (CNS) diseases. The modulation of specific GPCRs potentially implicated in PD, excluding dopamine receptors, may provide promising non-dopaminergic therapeutic alternatives for symptomatic treatment of PD. In this review, we focused on the impact of specific GPCR subclasses, including dopamine receptors, adenosine receptors, muscarinic acetylcholine receptors, metabotropic glutamate receptors, and 5-hydroxytryptamine receptors, on the pathophysiology of PD and the importance of structure- and ligand-based in silico approaches for the development of small molecules to target these receptors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available