4.6 Review

Genomics and pharmacogenomics of pediatric acute lymphoblastic leukemia

Journal

CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY
Volume 126, Issue -, Pages 100-111

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.critrevonc.2018.04.002

Keywords

Genome technology; Mutation; Pharmacodynamics; Drug toxicity; Leukemia

Ask authors/readers for more resources

Acute lymphoblastic leukaemia (ALL) is a prevalent form of pediatric cancer that accounts for 70-80% of all leukemias. Genome-based analysis, exome sequencing, transcriptomics and proteomics have provided insight into genetic classification of ALL and helped identify novel subtypes of the disease. B and T cell-based ALL are two well-characterized genomic subtypes, significantly marked by bone marrow disorders, along with mutations in trisomy 21 and T53. The other ALLs include Early T-cell precursor ALL, Philadelphia chromosome-like ALL, Down syndrome-associated ALL and Relapsed ALL. Chromosomal number forms a basis of classification, such as, hypodiploid ALL, near-haploid, low-hypodiploid, high-hypodiploid and hypodiploid-ALL. Advances in therapies targeting ALL have been noteworthy, with significant pre-clinical and clinical studies on drug pharmacokinetics and pharmacodynamics. Methotrexate and 6-mercaptopurine are leading drugs with best demonstrated efficacies against childhood ALL. The drugs in combination, following dose titration, have also been used for maintenance therapy. Methotrexate-polyglutamate is a key metabolite that specifically targets the disease pathogenesis, and 6-thioguanine nucleotides, derived from 6-mercaptopurine, impede replication and transcription processes, inducing cytotoxicity. Additionally, glucocorticoids, asparaginase, anthracycline, vincristine and cytarabine that trans-repress gene expression, deprives cells of asparagine, triggers cell cycle arrest, influences cytochrome-P450 polymorphism and inhibits DNA polymerase, respectively, have been used in chemotherapy in ALL patients. Overall, this review covers the progress in genome technology related to different sub-types of ALL and pharmacokinetics and pharmacodynamics of its medications. It also enlightens adverse effects of current drugs, and emphasizes the necessity of genome-wide association studies for restricting childhood ALL.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available