4.5 Article

Characterization of running with compliant curved legs

Journal

BIOINSPIRATION & BIOMIMETICS
Volume 10, Issue 4, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1748-3190/10/4/046008

Keywords

legged locomotion; dynamic modeling; variable stiffness; reduced-order models; bio-inspired robots

Funding

  1. US Army Research Laboratory [DAAD 19-01-2-0012]

Ask authors/readers for more resources

Running with compliant curved legs involves the progression of the center of pressure, the changes of both the leg's stiffness and effective rest length, and the shift of the location of the maximum stress point along the leg. These phenomena are product of the geometric and material properties of these legs, and the rolling motion produced during stance. We examine these aspects with several reduced-order dynamical models to relate the leg's design parameters (such as normalized foot radius, leg's effective stiffness, location of the maximum stress point and leg shape) to running performance (such as robustness and efficiency). By using these models, we show that running with compliant curved legs can be more efficient, robust with fast recovery behavior from perturbations than running with compliant straight legs. Moreover, the running performance can be further improved by tuning these design parameters in the context of running with rolling. The results shown in this work may serve as potential guidance for future compliant curved leg designs that may further improve the running performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available