4.0 Article

Reduced vagal control of the heart in high-fat diet mice: a potential role of increased butyrylcholinesterase

Journal

PHYSIOLOGICAL REPORTS
Volume 3, Issue 11, Pages -

Publisher

WILEY
DOI: 10.14814/phy2.12609

Keywords

Butyrylcholinesterase; heart rate; mice; obesity; parasympathetic

Categories

Funding

  1. National Institutes of Health (NIH) [1R15HL118696]
  2. USD Division of Basic Biomedical Sciences graduate program

Ask authors/readers for more resources

Suppressed parasympathetic function is commonly present in cardiovascular diseases, aging, obesity, and various other health conditions. Impaired parasympathetic action is known as a detrimental factor and contributes to the adverse outcomes in these conditions. However, the underlying mechanisms remain to be fully addressed. In this study, using high-fat diet (HFD)-induced obese mice as a model, the potential peripheral mechanisms underlying the impaired parasympathetic vagal control of the heart was examined. The HFD induced obesity and metabolic disorder in mice. These obese mice exhibited an attenuated response in heart rate to vagal stimulation, indicating impairment of peripheral parasympathetic activity in the heart. In cholinergic function-related proteins in the atria, protein levels of choline transporter and vesicular acetylcholine transporter were not decreased but increased, and type 2 muscarinic receptors showed a trend toward a reduction in HFD mice atria as compared with regular diet (RD) mice controls. While the protein level of acetylcholinesterase was not different, butyrylcholinesterase (BChE) protein level showed a twofold increase in HFD mice atria as compared with RD mice. Functionally, inhibition of BChE activity partially and significantly improved the attenuated response in heart rate to vagal stimulation in HFD mice. Collectively, these data suggest that increased BChE activity in the atria may contribute to the decreased parasympathetic function in HFD-induced obese mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available