4.6 Article

DISCOVERY OF A STRONGLY LENSED MASSIVE QUIESCENT GALAXY AT z=2.636: SPATIALLY RESOLVED SPECTROSCOPY AND INDICATIONS OF ROTATION

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 813, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2041-8205/813/1/L7

Keywords

galaxies: elliptical and lenticular, cD; galaxies: kinematics and dynamics; gravitational lensing: strong

Ask authors/readers for more resources

We report the discovery of RG1M0150, a massive, recently quenched galaxy at z = 2.636 that is multiply imaged by the cluster MACSJ0150.3-1005. We derive a stellar mass of log M-* = 11.49(-0.16)(+0.10) and a half-light radius of R-e,R-maj = 1.8 +/- 0.4 kpc. Taking advantage of the lensing magnification, we are able to spatially resolve a remarkably massive yet compact quiescent galaxy at z > 2 in ground-based near-infrared spectroscopic observations using Magellan/FIRE and Keck/MOSFIRE. We find no gradient in the strength of the Balmer absorption lines over 0.6R(e)-1.6R(e), which are consistent with an age of 760 Myr. Gas emission in [N II] broadly traces the spatial distribution of the stars and is coupled with weak H alpha emission (log [N II]/H alpha = 0.6 +/- 0.2), indicating that OB stars are not the primary ionizing source. The velocity dispersion within the effective radius is sigma(e,stars) = 271 +/- 41 km s(-1). We detect rotation in the stellar absorption lines for the first time beyond z similar to 1. Using a two-integral Jeans model that accounts for observational effects, we measure a dynamical mass of log M-dyn = 11.24 +/- 0.14 and V/sigma = 0.70 +/- 0.21. This is a high degree of rotation considering the modest observed ellipticity of 0.12 +/- 0.08, but it is consistent with predictions from dissipational merger simulations that produce compact remnants. The mass of RG1M0150 implies that it is likely to become a slowly rotating elliptical. If it is typical, this suggests that the progenitors of massive ellipticals retain significant net angular momentum after quenching which later declines, perhaps through accretion of satellites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available