4.7 Article

Performance of plastic wastes in fiber-reinforced concrete beams

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 183, Issue -, Pages 451-464

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2018.06.122

Keywords

Waste plastic; Synthetic fiber; Fiber concrete; Beam reinforced concrete

Ask authors/readers for more resources

Synthetic plastics are typically discarded, thus causing environmental pollution. Plastic wastes are recycled as fiber in concrete to solve this problem. In this study, synthetic fibers in a concrete matrix were investigated through compressive strength, splitting tensile, fracture energy, and flexural beam tests. The results show that an increase in fiber content improves the tensile strength of the concrete matrix. A high fiber content results in a substantial amount of fibers crossing a fractured section, thereby activating failure resistance mechanisms. Ring-shaped fibers, which are mainly designed to activate fiber yielding instead of fiber pullout, are better than irregularly shaped polyethylene terephthalate and waste wire fibers. Incorporating plastic fibers into concrete does not significantly change the failure mode of reinforced concrete beams compared to that of normal concrete beams. However, the first crack load presented improved results. The reinforced concrete containing ring-shaped plastic fibers with a width of 10 mm (RPET-10) exhibited remarkable results during the first crack load with an increment of 32.3%. It can be concluded that ring-shaped PET waste produces fiber concrete with a performance comparable to that of commercial synthetic fibers. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available