4.6 Article

Advanced optimization strategies for integrated dynamic process operations

Journal

COMPUTERS & CHEMICAL ENGINEERING
Volume 114, Issue -, Pages 3-13

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compchemeng.2017.10.016

Keywords

Dynamic optimization; Nonlinear programming; Direct transcription; Simultaneous collocation; Recipe optimization; Grade transitions

Funding

  1. Dow Chemical Company through the University Partnership Initiative

Ask authors/readers for more resources

Modern approaches for dynamic optimization trace their inception to Pontryagin's Maximum Principle 60 years ago. Since then the application of large-scale nonlinear programming strategies has been extended to deal with challenging real-world process optimization problems. This study discusses and demonstrates the effectiveness of dynamic optimization on three case studies on real-world chemical processes. In the first case, we consider the optimal design of runaway reactors, where simulation models may lead to unbounded profiles for many choices of design and operating conditions. As a result, optimization based on repeated simulations typically fails, and a simultaneous, equation-based approach must be applied. Second, we consider optimal operating policies for grade transitions in polymer processes. Modeled as an optimal control problem, we demonstrate how incorporation of product specification bands leads to multi-stage formulations that greatly improve process performance and significantly reduce off-grade product. Third, we consider an optimization strategy for the integration of scheduling and dynamic process operation for general continuous/batch processes. The method introduces a discrete time formulation for simultaneous optimization of scheduling and operating decisions. Finally, we provide a concise summary of directions and challenges for future extension of these optimization formulations and solution strategies. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available