4.7 Article

Fusion of fMRI and non-imaging data for ADHD classification

Journal

COMPUTERIZED MEDICAL IMAGING AND GRAPHICS
Volume 65, Issue -, Pages 115-128

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compmedimag.2017.10.002

Keywords

ADHD; Density clustering; Affinity propagation; Elastic net; Non-imaging data

Ask authors/readers for more resources

Resting state fMRI has emerged as a popular neuroimaging method for automated recognition and classification of different brain disorders. Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common brain disorders affecting young children, yet its underlying mechanism is not completely understood and its diagnosis is mainly dependent on behavior analysis. This paper addresses the problem of classification of ADHD based on resting state fMRI and proposes a machine learning framework with integration of non-imaging data with imaging data to investigate functional connectivity alterations between ADHD and control subjects (not diagnosed with ADHD). Our aim is to apply computational techniques to (1) automatically classify a subject as ADHD or control, (2) identify differences in functional connectivity of these two groups and (3) evaluate the importance of fusing non-imaging with imaging data for classification. In the first stage of our framework, we determine the functional connectivity of brain regions by grouping brain activity using clustering algorithms. Next, we employ Elastic Net based feature selection to select the most discriminant features from the dense functional brain network and integrate non-imaging data. Finally, a Support Vector Machine classifier is trained to classify ADHD subjects vs. control. The proposed framework was evaluated on a public ADHD-200 dataset, and our results suggest that fusion of non-imaging data improves the performance of the framework. Classification results outperform the state-of-the-art on some subsets of the data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available