4.6 Article

Evaluation of multilayer coated magnetic nanoparticles as biocompatible curcumin delivery platforms for breast cancer treatment

Journal

RSC ADVANCES
Volume 5, Issue 107, Pages 88096-88107

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra13838h

Keywords

-

Funding

  1. Research Council of Tehran University of Medical Sciences
  2. Iran National Science Foundation (INSF)

Ask authors/readers for more resources

Biocompatible multi-layer iron oxide magnetic nanoparticles (MNPs) for drug delivery applications with increased loading capacity, sustained sensitive release profile, and high inherent magnetic properties as well as improved cellular uptake were prepared. In this approach, Fe3O4 MNPs were obtained by a co-precipitation method and functionalized using hydroxyapatite (HAP) and/or polyethyleneimine (PEI). They were then modified with beta-cyclodextrin (CD) to increase their loading capacity. These MNPs allowed suitable encapsulation of hydrophobic curcumin (CUR) in the CD shell and CUR adsorption into the polymeric layers. The dissolution profile of CUR showed pH sensitive release of CUR. The protein corona pattern of the MNPs by electrophoresis showed lower protein adsorption for CD modified MNPs than for other MNPs. No significant toxicity was observed for the target MNPs, whereas the CUR loaded MNPs inhibited MCF-7 breast cancer cells more efficiently than free CUR. Moreover, the negligible hemolytic activity of the target MNPs showed their excellent haemocompatibility for cancer treatment. The preferential uptake of the drug by MCF-7 cells was observed for CUR loaded MNPs in comparison with free CUR using flow cytometric analysis. As a result, the designed and prepared MNPs can be considered to be a promising CUR delivery platform.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available