4.7 Article

Anti-icing and de-icing coatings based Joule's heating of graphene nanoplatelets

Journal

COMPOSITES SCIENCE AND TECHNOLOGY
Volume 164, Issue -, Pages 65-73

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2018.05.031

Keywords

-

Funding

  1. Ministerio de Economia y Competitividad of the Spanish Government [MAT2016-78825-C2-1-R, MAT2013-46695-C3-1-R, BES-2014-070371, EEBB-I-2017-11991]

Ask authors/readers for more resources

Epoxy coatings doped with graphene nanoplatelets (GNP) with average thickness close to 200 gm have been manufactured on glass fibre laminate substrate. Their electrical conductivity was close to 0.001-0.01 S/m because the GNP percentages added (8-12 wt% GNP) were higher than the electrical percolation threshold of this GNP/epoxy system. The electrical current increases exponentially with the applied voltage due to the self heating of the samples. Therefore, these materials don't follow the Ohm's law. Interestingly, the electrical resistance remains constant, or even decreases, at cryogenic temperatures. Self-heating of GNP/epoxy coatings due to Joule's effect was also studied, analysing the effect of the applied voltage. The coating doped with the highest GNP content presented more efficient heating due to its higher electrical conductivity and therefore higher transported electrical current. The application of a relatively high voltage, 750-800 V, induced the self-heating of materials, which was used for anti-icing and de-icing applications. Different thermoelectrical tests at low temperatures, between -10 and -30 degrees C, have been designed and carried out, confirming the high efficiency of these materials as an anti-icing and de-icing system (ADIS) which required low electrical power, close to 2.5 W, showing a short time to melt the ice and high reproducibility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available